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The Mobius action of PGL2(Z) on the upper half plane

PGL2(Z) acts by Mobius transformations on the upper half
plane model of the hyperbolic plane so that[

a b
c d

]
(z) =

{
az+b
cz+d if ad − bc = 1,
az+b
cz+d if ad − bc = −1.

Matrix S1 =

[
0 1
1 0

]
S2 =

[
−1 1
0 1

]
S3 =

[
−1 0
0 1

]

Isometry s1 : z 7→ 1/z s2 : z 7→ 1− z s3 = z 7→ −z

Fixed set {z | z = 1} {z | Re(z) = 1/2} {z | Re(z) = 0}
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Picturing the action

Now we can examine the action of PGL2(Z) by studying the
group of isometries generated by the three reflections s1, s2, s3.

1 The mirror lines `1, `2 intersect at the point
P = (1 +

√
3i)/2 at an angle of 2π/6, so the two reflections

s1, s2 generate the finite dihedral group D6.
2 The reflection lines `1, `3 intersect at right angles at the

point Q = i and therefore generate the finite dihedral group
D4.

3 The lines `2, `3 only share the ideal point∞ and therefore
the isometries s2, s3 generate a parabolic subgroup
isomorphic to the infinite dihedral group D∞.

4 The three lines `1, `2, `3 cut the plane into six regions, one
of which, labelled C in the following diagram, is bounded by
all three lines. This region forms a fundamental domain for
the action of PGL2(Z).

Graham A. Niblo



The Coxeter complex

The tiling of the plane by images of C is well known and
appears in a paper by Fricke which appeared in 1890.

C

l1

l2l3

PQ
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The cubing associated to the Coxeter complex

Maximal cubes in the cube complex associated to a wall
system correspond bijectively to maximal families of pairwise
crossing walls. It is relatively easy to see that there are two
orbits under the action of such families:

1 `1 crossing `3 at Q,
2 `1, `2 and s2(`1) crossing at P.

It follows that there are two orbits of maximal cubes, one
square and one 3-cube.
Each square corresponds to a translate of the point Q and each
3-cube to a translate of the point P.
We can now easily draw the corresponding cube complex.
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The cubing associated to PGL2(Z)

The group acts with two orbits of hyperplanes.
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The cubing associated to the blue walls

Note that this is not the
Bass Serre tree of a
splitting since the
group acts with
involutions on the
edges.

P

The tree dual to the configuration of lines
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The Bass-Serre tree associated to the blue walls

Taking the barycentric
subdivision repairs this
and we obtain a
splitting of PGL2(Z) as
the amalgamated free
product of the
stabilisers of P and Q
over their intersection.

P
Q

The tree dual to the configuration of lines

PGL2(Z) = D4 ∗
Z2

D6 = 〈S3,S1〉 ∗
〈S1〉
〈S1,S2〉.
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The cubing associated to the black walls

Note that while this
cubing is not a tree it is
quasi-isometric to the
Bass-Serre tree.
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An alternative way to obtain a cubing - The
Charney-Davis method

{e}<s3>

<s3, s1> <s1, s2><s1>

<s2>
<s1>

<s1, s2>

<s1, s3>

<s2>

<s3>

{e}

The complex of groups picture for PGL(2, Z) and the (3,3,3,) triangle group

<s2, s3>
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The Charney-Davis squaring for PGL(2,Z

{e}<s3>

s3<s1>

s3s1<s3>

s1<s3>

{s1s3}

{s3s1s3}

{s3s1}

<s3, s1> <s1, s2> s2<s1>

s1<s2>

<s1>

{s1}

{s3}

<s2> {s2}

{s1s2}

The Charney-Davis CAT(0) squaring for PGL(2, Z)
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The Charney-Davis cubing is not always CAT(0)

{e}

<s1>

<s1, s2> <s2, s3>

<s1, s3>

<s2>

<s3>

s1s3<s1>

{s3}

s3<s1>s1<s3>

s3s1<s3>

s1<s2> s3<s2>

{s1}

{s1s3} {s3s1}

{s3s1s3}

Positive, negative and 0 curvature in the 
Charney-Davis CAT(0) squaring for the 
(3,3,3) triangle group

s3<s2>

The dark blue block is a fundamental 
domain for the action and the two 
pale blue blocks are translates of it by 
the elements s3 and s3s1s3.
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Cubing a Coxeter group

Let (W ,R) be a finite rank Coxeter system and for generators
r , s ∈ R let m(r , s) denote the order of the product rs in W ,
where by convention m(r , r) = 1 and m(r , s) =∞ when the
product has infinite order. The standard presentation for W is
given by:

W ∼= 〈R | (rs)m(r ,s) = 1,∀r , s ∈ R〉.
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The linear representation of the Coxeter group W

Let V denote a real vector space with basis {~r | r ∈ R} in one to
one correspondence with the elements of the generating set R.
A symmetric bilinear form on V is defined by setting

〈~r ,~s〉 = − cos
(

π

m(r , s)

)
for all r , s ∈ R.

The action of W on V is defined by

s~r = ~r − 2〈~s,~r〉~s for all r , s ∈ R.

Definition
The roots of the Coxeter system (W ,R) are the elements of
the set Φ := {w~r | w ∈W , r ∈ R} ⊆ V . The elements, ~r , of the
basis for V are called simple roots.
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Positive roots

A root w~r may be expressed uniquely as a real linear
combination of the simple roots, and the coordinates will either
all be positive, or all be negative.

We say that the root is positive (respectively negative)
according to which of these alternatives occurs.
We denote the set of positive roots by Φ+, and the set of
negative roots by Φ−. The set of roots Φ is preserved under the
involution −I : V → V which sends v to −v .

Key fact

For w ∈W , r ∈ R, w~r ∈ Φ+ if and only if `(wr) > `(w).
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Brink and Howlett’s dominance relation (adapted)

Definition
Let α, β ∈ Φ. We say that α dominates β (and write α domβ) if

1 〈α, β〉 ≥ 1, and
2 there exists g ∈W such that gα ∈ Φ+ and gβ ∈ Φ−.

This relation is a partial order on Φ which is reversed by the
involution −I. Let � denote the reverse partial order, that is
α � β if and only if β domα.

The triple (Φ,�,−I) is a pocset.
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Halfspaces in W

Definition
For adjacent vertices u,ur in the natural Cayley graph ΓW ,
define

H(u,ur) = {w ∈W | d(w ,u) < d(w ,ur)}.

It is a standard (non-trivial) fact that there are no odd length
loops in ΓW , so H(ur ,u) = H(u,ur)∗.

Definition

H = {h(u,ur) | u ∈W , r ∈ R}.

The triple (H,⊆, ∗) is also a pocset.
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The triples (H,⊆, ∗) and (Φ,�,−I) are isomorphic

Definition

Given a root w~r ∈ Φ, set h(w~r) = {u ∈W | u−1w~r ∈ Φ+}.

Lemma

For all w ∈W , r ∈ R, we have h(w~r) = h(w ,wr).

Proof.

g ∈ h(w~r)⇔ g−1w~r ∈ Φ+

⇔ `(g−1wr) > `(g−1w) Key fact above

⇔ d(1,g−1wr) > d(1,g−1w)

⇔ d(g,wr) > d(g,w)

⇔ g ∈ h(w ,wr)
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Given a word w = r1 . . . rn ∈ R∗ we write ~wi = r1 . . . ri−1~ri , and
set ~w = ~wn.

Lemma

Let ρ, σ, τ ∈ Φ, with ρ = ~w.
1 h(ρ)∗ = h(−ρ).

2 If ρ, σ ∈ Φ+ and h(σ) ⊆ h(ρ), then σ = ~wi+1 for some
1 ≤ i ≤ `(w).

3 If h(τ) ⊆ h(ρ), then there are only finitely many σ ∈ Φ with
h(τ) ⊆ h(σ) ⊆ h(ρ).

4 If ρ 6= σ then h(ρ) 6= h(σ).
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Lemma

The map f which sends w~r ∈ Φ to h(w~r) = h(w ,wr) defines an
isomorphism between the partially ordered sets with involution
(Φ,�,−I) and (H,⊆, ∗).

Proof.
The map f is clearly surjective.
Injectivity follows from part 4 of the previous Lemma.
That h(α) ⊆ h(β) if and only if α � β for all α, β ∈ Φ follows from
Lemma 2.3 of Brink and Howlett.
h(−α) = W − h(α) so f ◦ (−I) = ∗ ◦ f .
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Corollary
1 The triple (H,⊆, ∗) is a discrete pocset. Hence, there is a

cube complex associated to the triple (H,⊆,∗ ) and each of
the components is CAT(0).

2 The Cayley graph ΓW maps equivariantly into a component
of the cube complex, so G preserves a component.
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The cube complex is finite dimensional

Lemma

Given a finitely generated Coxeter system (W ,R), there is a
number N = N(W ,R), such that any collection of more than N
halfspaces contains a nested pair.

Proof.
It suffices to show that there is a positive integer N such that,
given any subset S ⊆ Φ of cardinality greater than or equal to N
there are roots α, β ∈ S such that |〈α, β〉| ≥ 1.
If not, let B ⊆ S be a basis for the subspace of V spanned by
S. So |B| ≤ |R|, the rank of W . If |S| > N ′|B|, then there will be
two roots α, β ∈ S such that 〈α, γ〉 = 〈β, γ〉 for all γ ∈ B. Write
α =

∑
γ∈B αγγ and β =

∑
γ∈B βγγ. Then,

1 = 〈α, α〉 =
∑

γ∈B αγ(γ, α) =
∑

γ∈B αγ(γ, β) = 〈α, β〉 which
gives a contradiction. Hence we may put N = N ′|B|.
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Local finiteness

The parallel walls theorem of Brink and Howlett showed that
there is a bound on the number of walls in a collection that do
not dominate some other wall in the collection. This implies
local finiteness.
The strong parallel walls conjecture gives a similar global
bound on the size of a link in the cubing associated to a given
Coxeter group. It was proved by Caprace and others.
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The cubing associated to PGL2(Z)

The group acts with two orbits of hyperplanes.
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The cubing associated to the (3,3,3) triangle group

The pocset splits as a disjoint union of three families of half
spaces, where each family is linearly (totally) ordered and each
hyperplane from one family is transvers to each hyperplane in
the other two families.
It follows that the induced cubing for each of the three families
is a line and that the three lines form a direct product. So the
induced cubing is the natural integer lattice cubing on R3.
The cubing associated to the 3,3,3 triangle group is R3 with its
usual cubing.
In this case the action is NOT co-compact.
The Coxeter complex can be seen as a slice of this picture,
orthogonal to the line x = y = z.
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Co-compactness of the action

According to Williams the orbits of 3-cells correspond to
conjugacy classes of 3-generator reflection subgroups such
that the exponents of the rotations are finite.
According to Caprace there are finitely many such classes if
and only if the Coxeter group does not contain a Euclidean
crystallographic triangle group.
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Certain Artin groups can also be cubed.
In the case of right-angled Artin groups the procedure is
elementary and the group acts freely on the CAT(0) cubing.
For Artin groups of type FC Charney and Davis showed how to
construct a CAT(0) cubing on which the group acts
isometrically, but with large stabilisers (the special subgroups of
finite type).

Graham A. Niblo



Semi-splittability and almost invariant sets

Given a subset B of a group G with e ∈ B we may build a
G-pocset from it as follows:
Let H = {gB | g ∈ G} ∪ {gB∗ | g ∈ G}. The involution ∗
denotes complementation.
Given an element g ∈ G there is a natural vertex vg in the
cubing defined by setting vg({h, h∗} equal to the halfspace
containing it, and so there is a map g → vg from G to X
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When is there an invariant component?

Let (X ,d) denote the component of the cubing containing ve,
equipped with the edge metric d on its vertex set.

Lemma
Let H be the left stabiliser of the pair {B,B∗} in G. Then
d(vg , ve) <∞ if and only if the symmetric difference B + Bg−1

is contained in finitely many cosets HF. (We say that B is
H-almost invariant in G.)

Proof.
d(vg , ve) is the number of translates kB such that exactly one of
e,g belongs to kB. This is the number of translates kB such
that k−1 ∈ B + Bg−1. If this is contained in finitely many right
cosets HF then k lies in finitely many left cosets F−1H so there
are only finitely many translates F−1B separating vg from ve as
required.
Reversing the argument gives the converse.
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When is there an interesting invariant component?

Lemma
The orbit Gve is bounded if and only if B or B∗ is H-finite.

Corollary
If B ⊂ G has left stabiliser H, is H-almost invariant, and neither
B nor B∗ is H-finite, then G acts with an unbounded orbit on a
CAT(0) cube complex.

Definition
We say that a countable group G is semi-splittable over a
subgroup H if it admits a subset B ⊂ G with left stabiliser H
such that B is H-almost invariant, and neither B nor B∗ is
H-finite.

Graham A. Niblo



Generalising Bass-Serre theory

Theorem (Sageev/Roller-N/Gerasimov)

Let G be a countable group, H < G. Then G is semi-splittable
over H if and only if it admits an action on a CAT(0) cube
complex satisfying the following:

The action has a single orbit of hyperplanes Gh.
The action has no fixed points.
H is the left stabiliser of a hyperplane.
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The geometric meaning of H-almost invariance

Let G be a finitely generated subgroup, Γ a locally finite Cayley
graph for G and B ⊂ G with left stabiliser H

Definition
The coboundary of a set of vertices B in a graph Γ is the set of
edges of Γ with precisely one end point in B.

Lemma (Scott-Houghton)

B is H-almost invariant in G if and only if the set of cosets HB
has finite coboundary in the quotient H \ Γ. It is proper if and
only if neither HB nor HB∗ is finite.

Proof.
Bg is the right translate of B by a given G and this consists of
points within |g| of B, so H-finiteness of B + Bg asserts that
there are only finitely many vertices in H \ Γ which are not in
HB but are within |g| of it.
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An aside

The right action of G on H \G
induces a linear action on `2(H \B)
by post and premultiplication with
projection onto HB.
When B is H-almost invariant we
can define an index for each
operator ρg yielding a
homomorphism:

G→Z
g 7→rk(Ker)(ρg)− rk(Coker(ρg))

HB

H\G

HBg
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A connection with K -theory

0-1-2-3-4 1 2 3 4 5 6 7 8

When G = Z and B = N the operators ρg form the Toeplitz
algebra T . The index map induces the Toeplitz extension
which plays a key role in the proof of Bott periodicity for
algebraic K -theory:

1→ K → T → C(S1)→ 1.

A generalisation of this by Pimsner, Voicelscu and others allows
one to compute the K -theory of the reduced C∗ algebra of a
graph product of groups in terms of the K -theory of the vertex
stabilisers.
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Constructing almost invariant sets from actions on
cubings

Given an action of G on a CAT(0) cube complex X choose a
vertex v adjacent to a halfspace h.
Now set B = {g ∈ G | gv ∈ h}.
Then B is H-almost invariant where H is the left stabiliser of the
corresponding hyperplane h. B is proper if and only if the orbit
Gv is unbounded in the cube complex.

Example
Let G be the free group on generators a,b acting on its
standard Cayley graph. Let e denote the edge joining e to a
and h be its midpoint. Then the set
B = {g ∈ G | ge is not separated from e by h} is a proper
{1}-almost invariant set. It is equal to all elements whose first
syllable is not a positive power of a.
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Hyperplanes

The complexity of a hyperplane, measure by its intersections
with its translates in some sense measures how far the
corresponding almost invariant set is from yielding a splitting of
the group. If the hyperplane is a point then the group splits over
its stabiliser.

1 Each hyperplane H is itself a cube
complex and is contained in a totally
geodesic subspace of the form H× [0,1].

2 It is therefore a CAT(0) cube complex and
has hyperplanes of its own.

3 Given a hyperplane K of H the subspace
K × [0,1] hits each edge of a cube which
meets it orthogonally at its midpoint.

4 It follows that the hyperplanes in H are
precisely the intersection of H with the
other hyperplanes of X .

[0,1]

H
K
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Lemma
Let X be a CAT(0) cube complex and G be a group G acting on
X with a single orbit of hyperplanes. Let H be the stabiliser of a
hyperplane h and let SingG(h) be the set
{g ∈ G | gh is transverse to h}. Then SingG(h) is of the form
HFH for some subset F ⊂ G.

Proof.

If fh is transverse to h then fh1h is transverse to h−1
2 h for any

h1,h2 ∈ H, so SingG(h) is invariant under left and right
multiplication by H. Hence SingG(h) = HFH for some subset
F ⊂ G.
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The finite hyperplane theorem

Theorem
Let G be a finitely generated group, and H be a finitely
generated subgroup with e(G,H) ≥ 2. Let X be the Sageev
cubing and h the hyperplane. Then SingG(h) is a finite union of
double cosets HFH and the hyperplane h is finite if and only if
SingG(h) lies in the subgroup

CommG(H) = {g ∈ G | Hg ∩ H has finite index in H and Hg}.
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Proof of the finite hyperplane theorem - part 1

HB

gHB

H\G

We use the finite generation of H to arrange for the coboundary
of HB to be connected so that two translates cross if and only if
their coboundaries intersect.
Since the couboundary is H-finite there can be only finitely
many translates of B up to the action of H which cross it. The
double cosets HfH in SingG(H) count this number.
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Proof of the finite hyperplane theorem - part 2

Recall that hyperplanes transverse to h correspond bijectively
with cosets gH in HFH.
Since HFH ⊂ CommG(H) each double coset HfH decomposes
as finitely many left cosets of H:

HfH = (ff−1)HfH = f (H f H) = fSf (H ∩ H f )H = fSf H.
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Applications of the finite hyperplane theorem

If G is finitely generated and has a finitely generated subgroup
H with e(G,H) ≥ 2 and satisfying any of the following
conditions then the hyperplanes in the Sageev cubing are finite:

1 H is finite,
2 H is normal in G,
3 The commensurator of H in G is G.
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The Plan

When G acts on a CAT(0) cube complex with finite hyperplanes
then the complex is sufficiently tree-like for us to obtain an
action on a tree. In particular we obtain:

Theorem (Stallings’ theorem)

Let G be a finitely generated group. Then G
splits over a finite subgroup if and only if
e(G) ≥ 2.
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Outline proof of Stallings’ theorem

1 e(G) > 1⇒ G has an almost invariant set B with finite
stabiliser.

2 Therefore G acts on a CAT(0) cube complex with finite
hyperplane stabiliser.

3 The hyperplanes are compact and the cube complex is
contractible.

4 So G acts on a simply connected 2-complex X which
contains a finite essential track.

5 So X contains a G invariant pattern of minimal tracks.
6 So G acts on a tree.
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Steps 1 and 2 were outlined earlier on.
Step 3 The cubing is contractible because it is CAT(0) so
geodesics are unique and vary continuously with their
endpoints. Hyperplanes are finite because
CommG(H) = G.
Step 4 asserts that G acts on a simply connected
2-complex. For this we take a suitably refined triangulation
of the 2-skeleton of the cubing.
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Dunwoody patterns

Definition
A pattern in the 2-complex consists of a closed subset P in the
complement of the 0-skeleton of X such that P meets each
closed 1-simplex γ in a finite union of points all lying in the
interior of γ, and each closed 2-simplex in a finite union of
disjoint closed line segments, each joining two points in the
boundary edges.
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Dunwoody patterns

Definition
A pattern in the 2-complex consists of a closed subset P in the
complement of the 0-skeleton of X such that P meets each
closed 1-simplex γ in a finite union of points all lying in the
interior of γ, and each closed 2-simplex in a finite union of
disjoint closed line segments, each joining two points in the
boundary edges.

Note that patterns are
locally separating.
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Notes on patterns

1 This definition does not quite agree with that given by
Dunwoody since we allow the line segments to join two
points in the same edge of a 2-simplex.

2 A connected pattern is called a track

Theorem
If X is a simply connected 2-complex then any track is a
separating set.

Graham A. Niblo



Proof

Given a track τ and an edge e define w(e) = |τ ∩ e|. Reducing
mod 2, we obtain a Z2-valued 1-cochain z.

0

1 1

The weight function w and cochain z

3 3

4
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Proof

Given a track τ and an edge e define w(e) = |τ ∩ e|. Reducing
mod 2, we obtain a Z2-valued 1-cochain z.

0

1 1

The weight function w and cochain z

3 3

4 00

1

δz(σ)=1+1+0

z=δf
δz(σ) = 0 for each 2-simplex σ.
The corresponding class in
H1(X ,Z2) is zero if and only if the
pattern separates X
If π1(X ) = {0} then H1(X ,Z2) = 0
so every track separates.
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Least weight tracks

Now assume that X is a simply connected, triangulated
2-complex (so every track separates)

Definition
A pattern P (or track) is said to be finite if it intersects only
finitely many 1-simplices, and in this case we assign it a
weight, ‖P‖ = |P ∩ X (1)|. A finite pattern is said to be
essential if at least two of its complementary components are
unbounded. It is said to be least weight if it is essential and has
least weight among all essential tracks.

The Big Idea: “Least weight tracks do not intersect”
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Example

. . . unfortunately least weight tracks can (and often do)
intersect.
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Cut and paste

Lemma
Any least weight pattern on X consists of a single track which
intersects each edge of X in at most one point and each
2-simplex in at most a single arc joining distinct edges of the
simplex.
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Proof

Given a pattern P and an edge e define w(e) = |P ∩ e|. If P
has more than one component they each have weight less than
P so they are all inessential. They cut the space in a tree
pattern, and, by hypothesis two of the complementary
components (corresponding to vertices of this tree) are
unbounded. Choose an edge in the tree separating them This
is a track in the pattern and its two complementary components
are both unbounded. This contradicts the minimality of P.

= unbounded region

e
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Reducing the characteristic function of P mod 2 we obtain a
new function with values 0 and 1, from which we can build a
new pattern Q.

3 3

4
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Reducing the characteristic function of P mod 2 we obtain a
new function with values 0 and 1, from which we can build a
new pattern Q.

0

1 1

If P crossed some edge at least twice
then the norm of Q is strictly less than
||P||, but their characteristic functions
give identical elements of H1

bdd (X ,Z2) by
construction, so Q is also a least weight
pattern, contradicting the minimality of P.
So P is a single track which crosses
each 2-simplex in a single arc and which
separates X into two unbounded
components.
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Theorem
Let σ and τ be least weight tracks in a simply connected
2-complex X which intersect transversely in the interior of the
2-cells of X . Then there are disjoint least weight tracks σ′ and
τ ′ in X such that (σ ∪ τ) ∩ X (1) = (σ′ ∪ τ ′) ∩ X (1).
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Proof

Let ‖σ‖ = ‖τ‖ = n (every least weight pattern is a track of
weight n).
Taking the boundary of a small regular neighbourhood of
the union of the two tracks gives a new pattern P with
weight 2n. There are “opposite corners” which are both
unbounded so at least two of the tracks in P are essential.
Hence they each have weight n and they are least weight.
They are given by the canonical cut and paste sketched
above.

Graham A. Niblo



Least length tracks

Now we "hyperbolise" our complex by uniformizing each
simplex as an ideal hyperbolic triangle so that the midpoint of
each edge is identified with the natural midpoint of each edge.
We can replace each arc of our pattern with the corresponding
geodesic arc in the hyperbolic metric and define the length of
the pattern to be the sum of these lengths.
We say that a pattern is minimal if it is a least weight pattern of
least length among all least weight patterns. (In particular it is a
track.)

Theorem
Minimal tracks do not cross.

Cutting and pasting reduces length

The Meeks Yau rounding trick
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How do we know minimal tracks exist?

We don’t and they might not.
If the complex has a separating vertex which cuts it into at least
two unbounded components then we obtain least weight tracks
in the neighbourhood of that vertex. By moving them out to
infinity we can make them arbitrarily short AND arbitrarily close
to the separating vertex.

Shortening horocyclic tracks We cannot arbitrarily shorten
non-horocyclic tracks
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Since non-horocyclic tracks have to have length at least
log(1 +

√
2) they cannot be arbitrarily shortened. We can apply

the Arzela-Ascoli theorem to prove that minimal tracks exist in
this case.

Theorem
The Arzela-Ascoli theorem If C is a compact metric space and
Γ is a separable metric space, then every sequence of
equicontinuous maps fn : Γ −→ C has a subsequence that
converges uniformly on compact subsets to a continuous map
f : Γ −→ C.
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Defining the compact metric space C

Let ` = inf{lengths of least weight tracks}.
If there are no horocyclic tracks ` ≥ log(1 +

√
2).

Choose ε > 0 and consider only least weight tracks of
length < `+ ε.
There is a neighbourhood of the ideal vertices which no
such track can enter since it is too far from opposite sides
of triangles.
So we can remove an open neighbourhood of all ideal
vertices and obtain a 2-complex Y which contains all
sufficiently short least weight tracks.
This 2-complex is locally finite since all infinite branching in
the cube complex occurs at the vertices. This follows from
the fact that hyperplanes are finite.
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Now take a sequence of least weight tracks with length
converging to ` and all of length < `+ ε.

Since there is one hyperplane orbit and only finitely many
edges on each hyperplane there are only finitely many
edge orbits, so, translating by elements of G we can
assume all the tracks in the sequence intersect some given
edge e.
The ball C of radius `+ ε around e in Y is compact and
contains all the tracks of length < `+ ε which meet the
edge.
There are only finitely many possibilities for the topology of
a least weight track in C. So we can take a subsequence
consisting of tracks which are all homeomorphic to some
graph Γ.
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We now have a sequence of maps

fn : Γ −→ C

defining tracks with lengths converging to `.

Theorem
The Arzela-Ascoli theorem If C is a compact metric space and
Γ is a separable metric space, then every sequence of
equicontinuous maps fn : Γ −→ C has a subsequence that
converges uniformly on compact subsets to a continuous map
f : Γ −→ C.

Since length varies continuously with the tracks the map f
defines a track of length ` as required.

Graham A. Niblo



Generalising Stallings’ Theorem

All we needed to make this argument work is an essential
action of G on a CAT(0) cube complex so that each hyperplane
is finite.

Theorem
If G is a finitely generated group, H is a finitely generated
subgroup with e(G,H) ≥ 2 and G = CommG(H) then G splits
over a subgroup commensurable with H.

Graham A. Niblo



Example - The cubing of PGL(2,Z) associated to the
black walls

Note that while this
cubing is not a tree it is
quasi-isometric to the
Bass-Serre tree.

Each red quadrilateral is
a least weight minimal
track. The translates do 
not intersect and give rise 
to a dual tree for the group.
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Maps between cubings

Let X and Y be CAT(0) cube complexes and f : X → Y be a
cellular immersion.
The map induces a map on the set of half spaces which
respects inclusion and complement, i.e., it induces a map on
the dual pocset.

-1

-1

0

0

1

1

2 3

3

2

Bending indicates that half spaces which were nested become
incomparable in the partial order.
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The Serre embedding

Given a countable cube complex X choose a vertex v and
for each vertex u define a 0,1 valued function on the
hyperplanes as follows: χu(h) = 1 if and only if h separates
u from v .
This defines an embedding of X in the infinite unit cube, so
the cube is a terminal object in the category.
The inclusion induces a map between the pocset of half
spaces - this is a covariant functor which “forgets” the
partial order.
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Extending the action

If G acts on X we obtain an induced action on the infinite cube:
For a vertex χ of the infinite cube, a hyperplane h and g ∈ G
define

gχ(h) :=

{
χ(g−1h), if h does not separate v ,gv ,
1− χ(g−1h), if h does separate v ,gv .

Graham A. Niblo



Extending the action to Hilbert space

The unit `1 cube maps naturally into the Hilbert space of
`2-functions on the hyperplanes and the action extends:

gχ(h) :=

{
χ(g−1h), if h does not separate v ,gv ,
1− χ(g−1h), if h does separate v ,gv .

This is affine since
each element is acting
by a unitary map
composed with a
translation, and the
translation function is a
cocycle:

u

v

w
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The embedding theorem

Theorem (GAN, Reeves, Roller)
Let G be a group acting on a CAT(0) cube complex X. For each
vertex v ∈ X (0) there is a G-equivariant embedding from X to a
Hilbert space on which G acts by affine isometries. The action
on Hilbert space will have a global fixed point if and only if the
action on the cube complex has a bounded orbit, and will be
proper if and only if the action on the cube complex is proper.

Proof.
Equipping the vertices of the unit cube in Hilbert space with the
`1-metric the embedding is an isometry on the 1-skeleton.
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The embedding is NOT an isometry in the geodesic
metrics.

u

u

v

v

w

w

The geodesic distance between the vertices labelled v and w is
2 in the cube complex but only

√
2 in the Hilbert space.
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Uniform embeddings

Recall that a map f : X → Y between metric spaces
(X ,dX ), (Y ,dY ) is said to be a uniform embedding if there are
increasing functions S,T : R+ → R+ such that

dY (f (x), f (x ′)) ≤ S(dX (x , x ′))

dX (x , x ′) ≤ T (dY (f (x), f (x ′)))

Our embedding of a cube complex in Hilbert space is
contracting so we may choose S to be the identity. Since the
cube complex is geodesic this shows that f0 is a coarse
Lipschitz map. Pythagoras tells us that the compression is of
the order of the square root so it is a uniform embedding.
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Fixed points from bounded orbits

Theorem
Let G be a group acting with a single, infinite orbit of
hyperplanes on a CAT(0) cube complex X with a bounded orbit.
Then G has a unique fixed point and it is a vertex of X .

If X is complete then the metric centre of any bounded orbit
provides the required fixed point.
An infinite dimensional cube complex is not complete so we
cannot apply this argument. There are two approaches we can
try to use to remedy this:
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Use the metric completion

Take the metric completion X of X . This is a complete
CAT(0) space.
The G-action extends to X and so has a bounded orbit
there.
Since X is complete this action has a fixed point p.

Unfortunately we do not it a priori expect p to lie in the
subspace X .
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Use the Hilbert space

Embed the cube complex in Hilbert space and extend the
action.
Since G has a bounded orbit in X it has a bounded orbit in
Hilbert space.
Since Hilbert space is complete G has a fixed point s.
Since G acts transitively on the hyperplanes it acts
transitively on the coordinates of s and the action of any
given element converts some coordinate r to either r or
1− r .
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It follows that an invariant function takes only two values.
Such a vector is not `2 unless every coordinate of the fixed
vector is 0 or 1 and only finitely many of them are non-zero.
Hence any fixed point represents a vertex of the unit cube.
The fixed set is convex and it consists of vertices of the
cube in Hilbert space.
Since the set of vertices is disconnected this shows that G
has a unique fixed point in the Hilbert space and this is a
vertex s.

It remains to show that this vertex comes from a vertex of the
original cube complex.
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Now we put the two constructions together.
Since X embeds in Hilbert space and Hilbert space is complete
we can extend the embedding equivariantly to all of X .

X l 2

X
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Any fixed point p in X must map to the fixed vertex s so it
follows that s is the limit of a sequence of points in the image of
X .

But each point in the sequence lies in the
image of a closed cube of X and the
distance from a vertex s of the unit cube
to a face not containing it is 1.

s

Hence almost all points in the sequence lie in closed cubes
containing s. It follows that s lies in a closed cube from X as
required.
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Kazhdan’s property (T) for geometric group theorists

Definition
A countable discrete group G has property (T) if and only if
every affine isometric action on a separable Hilbert space has a
global fixed point.

Example

SL3(Z) has Kazhdan’s property (T).

Corollary
Every action of a property T group on a CAT(0) cube complex
has a global fixed point.
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The Haagerup property (a-T-menability)

Definition (The Haagerup property for geometric group
theorists)
A countable discrete group G is said to be a-T-menable if it
admits a metrically proper, affine isometric action on a
separable Hilbert space.

Recall that an action is metrically proper if for any ball B of finite
radius the set {g ∈ G | gB ∩ B 6= ∅} is finite.
It follows that any group acting properly on a CAT(0) cube
complex is a-T-menable.
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Examples of a-T-menable groups

Countable amenable groups (Bekka, Cherix and Valette)
Proper groups of isometries of real or complex hyperbolic
space (e.g. free groups, surface groups etc)
Coxeter groups (Bozejko, Januszkiewicz, Spatzier)
Diagram groups, e.g., Thompson’s group F (Farley)
Finitely presented B(4)-T(4) or word-hyperbolic B(6) group
(Wise)
Right angled and special Artin groups (Deligne, Haglund
and Wise)
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Analytic methods in group theory

C*-Exactness
Uniform
embedding
property

Yu’s
Property A

Coarse Baum-
Connes
conjecture

Strong Novikov
 conjecture

Amenability Haagerup
property

Baum-Connes
conjecture
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Følner’s criterion

A countable discrete group G is
amenable if and only if for each n
there is a non-empty finite subset
An ⊂ G such that for all R ∈ R

|gAn + hAn|
|An|

→ 0

uniformly on{(g,h) | d(g,h) ≤ R}.
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A non-equivariant version of Følner’s criterion

Yu’s property A
A (discrete) metric space X has property A if and only if there
exists a sequence {Sn} of positive reals such that for each n
and each x ∈ X there is a function fn,x : X → N with support
contained in BSn (x) such that for all R ∈ R+

‖fn,x − fn,x ′‖
‖fn,x‖

→ 0

uniformly on the set {(x , x ′) | d(x , x ′) ≤ R}.
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Property A for groups acting on finite dimensional
CAT(0) cube complexes

Theorem (Brodzki, Campbell, Guentner, Niblo, Wright)

Let G be a group acting properly on a CAT(0) cube complex of
finite dimension. Then G has property A.
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Outline of the proof

We assign binomial weights satisfying certain conditions to
intervals in the cube complex:

Definition
An interval in a CAT(0)
cube complex is the set
of all cubes lying
between two vertices
x , y .

x

O
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The fundamental embedding lemma

ANNALSOF MATHEMATICS 

Vol. 51, No. 1, January, 1950 

A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS 

BY R. P. DILTORTH 

(Received August 23, 1948) 

1. Introduction 

Let P be a partially ordered set. Two elements a and b of P are camparabte 

if either a 2 b or b 2 a.  Othenvise a and b are non-comparable. A subset S of P 
is independent if every two distinct elements of S are non-comparable. S is 

dependent if it contains t~vo  distinct elements which are comparable. A subset 

C of P is a chain if every two of its elements are comparable. 

This paper will be devoted to the proof of the following theorem and some of 

its applications. 

THEOREM1.1. Let every set of k + 1 elements of a partially ordered set P be de- 
pendent while at least one set of k elements i s  independent. T hen  P i s  a set s u m  of 

k disjoint chains.' 

I t  should be noted that the first part of the hypothesis of the theorem is also 

necessary. For if P is a set sum of k chains and S is any subset containing k + 1 

elements, then a t  least one pair must belong to the same chain and hence be 

comparable. 
Theorem 1.1contains as a very special case the Radb-Hall theorem on repre- 

sentatives of sets (Hall 111). Indeed, we shall derive from Theorem 1.1a general 

theorem on representatives of subsets which contains the Kreweras (Kreweras 

[2]) generalization of the Radb-Hall theorem. 

As a further application, Theorem 1.1is used to prove the following imbedding 

theorem for distributive lattices. 

THEOREM1.2. Let D be a finite distributive lattice. Let k(a) be the number of 

distinct elements i n  D which cover a and let k be the largest of the numbers k(a). 

Then  D i s  a sublattice of a: direct un ion  of k chains and k i s  the smallest number 

for which such a n  imbedding holds. 

2. Proof of Theorem 1.1. 

We shall prove the theorem first for the case where P is finite. The theorem 

in the general case will then follo~v by a transfinite argument. Hence let P be a 

finite partially ordered set and let k be the maximal number of independent 

elements. If k = 1, then every two elements of P are comparable and P is thus 

This theorem has a certain formal resemblance to a theorem of Menger on graphs 
(D. Kijnig, Theorie der endlichen und unendlichen Graphen, Leipzig, (1936)) .  Menger's 

theorem, however, is concerned with the characterization of the maximal number of dis- 
joint, complete chains. Another type of representation of partially ordered sets in terms of 

chains has been considered by Dushnik and Miller [3] (see also Komm [4]). It can be shown 
that  if n is the maximal number of non-comparable elements, then the dimension of P in 

the sense of Dushnik and Miller is a t  most n. Except for this fact, there seems to be little 

connection between the two representations. 
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Two different embeddings of the same interval

Two different embeddings of the same interval
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Example

Here we have taken a 1-dimensional CAT(0) cube complex (a
tree) and computed the weights with respect to an embedding
in the Euclidean plane.
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Stabilisers at infinity

Recall that a vertex of the cube complex can be viewed as an
ultrafilter on the pocset. The full collection of ultrafilters yields
additional vertices "at infinity":

Figure: The Euclidean plane with admissible vertices attached
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Given a vertex v in the cube complex and a vertex u at infinity
we can still define an interval [v ,u], and use this to define
Yu-style weighting functions for each u at infinity.
But these functions are equivariant under the action of the
stabiliser of u, so they actually form a Reiter sequence for the
stabiliser, i.e. a weighted form of a Folner sequence.

If G acts properly on a
CAT(0) cube complex
of finite dimension then
stabilisers at infinity are
amenable.
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